
Video BenchLab: An Open Platform for Realistic
Benchmarking of Streaming Media Workloads

Patrick Pegus II Emmanuel Cecchet Prashant Shenoy
University of Massachusetts Amherst

{ppegusii,cecchet,shenoy}@cs.umass.edu

ABSTRACT
In this paper, we present an open, flexible and realistic
benchmarking platform named Video BenchLab to measure the
performance of streaming media workloads. While Video
BenchLab can be used with any existing media server, we provide
a set of tools for researchers to experiment with their own
platform and protocols. The components include a MediaDrop
video server, a suite of tools to bulk insert videos and generate
streaming media workloads, a dataset of freely available video and
a client runtime to replay videos in the native video players of real
Web browsers such as Firefox, Chrome and Internet Explorer. We
define simple metrics that are able to capture the quality of video
playback and identify issues that can happen during video replay.
Finally, we provide a Dashboard to manage experiments, collect
results and perform analytics to compare performance between
experiments.
We present a series of experiments with Video BenchLab to
illustrate how the video specific metrics can be used to measure
the user perceived experience in real browsers when streaming
videos. We also show Internet scale experiments by deploying
clients in data centers distributed all over the globe. All the
software, datasets, workloads and results used in this paper are
made freely available on SourceForge for anyone to reuse and
expand.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools, .D 2.8 [Metrics]:
Performance measures.

General Terms
Measurement, Performance, Experimentation.

Keywords
Benchmarking, Video, Streaming, Web browsers.

1. INTRODUCTION
In just over two decades, streaming media has become ubiquitous
in our digital lives. Ordinary users are now able to create
streaming media content using ordinary smartphones or
inexpensive digital camcorders. Online services such as YouTube,
Netflix and live streaming services such as Justin.tv provide a
broad variety of content for our entertainment. Today online video
is often viewed from a range of mobile devices such as phones or
tablets as well as larger displays such as TVs connected to
Internet streaming devices.

Although streaming media has gone mainstream, it continues to
raise new opportunities and research challenges, and multimedia
systems researchers have been working on a range of topics from
DASH protocols, caching and content distribution, and clustered
media servers. New topics such as the use of cloud computing and
mobile computing in the context of streaming have emerged in
recent years. While research on multimedia systems continues to
flourish, researchers face several hurdles in carrying out
experimental aspects of this research. There is a dearth of
streaming media benchmarking tools to measure the performance
of servers, clients and the network; while a few commercial
benchmarking tools exist [26], they present difficulties for free
research use or may not be amenable to modifications. The dataset
track at the ACM Multimedia Systems conferences has been
instrumental in gathering numerous open datasets for research use
[1], but realistic performance evaluation involves more than
datasets and traces—tools to easily set up experiments, generate
workloads, and gather results are needed, especially when
experiments run on myriad types of client devices and remote
servers or cloud systems. In the absence of such tools, a
researcher is left with the option of using homegrown tools or
cumbersome manual experimentation.

The BenchLab project seeks to address these limitations by
designing an open, freely-available platform for realistic
benchmarking of servers applications. While BenchLab was
initially designed to support web-based applications and services
(e.g., multi-tier web applications accessed from browser-based
clients), in this paper we describe Video BenchLab, an enhanced
platform that provides similar functions for streaming media
servers and protocols accessed via browser-based players. Our
overall goals are to provide an open, flexible and realistic
environment to generate and inject client streaming workloads
onto servers to enable careful experimental evaluation of the
performance of streaming servers, clients and network protocols.
Towards this end, Video BenchLab uses real web browsers
running real video players to request HTTP streaming content
from the server. The platform supports desktop-based, mobile
phone-based and tablet-based clients for generating workloads. A
key goal of Video BenchLab is to enable automation for running

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

MMSys '15, March 18 - 20, 2015, Portland, OR, USA
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-3351-1/15/03…$15.00
http://dx.doi.org/10.1145/2713168.2723145

complex experiments where clients, servers or both may be
distributed or running on remote machines such as cloud servers;
an experiment comprises a set of clients that are controlled
remotely by the platform and provided with a video request trace
that they then inject on the specified server or set of servers. The
content is streamed to HTML5 players supported by modern
browsers and a range of statistics are gathered and uploaded to a
central database. Real user behavior when watching video content
such as pausing, seeking, changing video quality or clicking on
related videos can be simulated as part of the trace replay.
BenchLab provides the ability to inject requests onto real servers
(e.g., YouTube) and also provides a synthetic server backend
based on MediaDrop that emulates a YouTube-like system on
small scale. Our goal is to enable a range of performance
evaluation experiments related to server design, streaming
protocol performance, network performance and client-side
performance. Finally, Video BenchLab includes new tools that
permit analysis of results across different runs of an experiment.
We believe that the open nature of the BenchLab platform makes
it an attractive choice for multimedia systems researchers for use
in their own research and experimentation.

In designing and implementing Video BenchLab, this paper
makes the following contributions:

1) Platform: Video BenchLab brings the many benefits of the
original BenchLab platform to streaming media performance
evaluation. Like BenchLab, Video BenchLab is an open
platform constructed using open-source components;
researchers are free to use the entire platform for running and
automating experiments, or any subset of BenchLab’s tools.

2) Server backend: We design a video server appliance that is
based on the open MediaDrop platform that seeks to emulate
a YouTube-like system that enables users to upload content,
view uploaded content as well as related videos. MediaDrop
is a content manager rather than a streaming server and we
envision that researcher will be able to “plug in” their own
streaming protocols into the platform (e.g., a new DASH
protocol) when using Video BenchLab in their research. A
researcher using Video BenchLab is not restricted to using
our server backend—indeed any other HTTP streaming
server could be used as a backend, and it is even possible to
use existing services such as YouTube as the server for
experimentation.

3) Video dataset and tools: We provide tools for researchers to
efficiently upload any video dataset of their choice into our
MediaDrop-based server backend for their experiments. In
addition, we provide a virtual machine appliance where
MediaDrop is pre-loaded with a set of videos that are freely
available without licensing restrictions; both desktop and
mobile versions of these videos are available to enable
flexible experimentation. While Video BenchLab is able to
replay any request trace that is provided by a researcher, we
also provide tools to create custom request traces that are
tailored to the content loaded on the server, with the ability
to vary statistical properties of the traces.

4) Experimental Use Cases: Finally we present numerous use
case scenarios to illustrate how a researcher might use Video
BenchLab in their research by showing what types of
experiments can be run, and how these results might be used
to understand the behavior of the client, server or the
network. We also show how Video BenchLab enables

experimental results to be gathered, analyzed and compared
and used for what-if analyses.

The rest of this paper is structured as follows. We present Video
BenchLab and its different components in section 2. We describe
different usage scenarios and experimental results in section 3.
Section 4 discusses related work and we conclude in section 5.

2. VIDEO BENCHLAB
Video BenchLab provides multiple components and tools for
researchers to experiment with media streaming environments: a
streaming server virtual appliance (section 2.1), video data sets
and workload generators to exercise these datasets (section 2.2), a
client runtime to play videos in existing Web browsers using their
native HTML5 players (section 2.3) and a Web Application
hosting a database to define experiments, collect results and
provide analytics (section 2.4).

2.1 MediaDrop Virtual Appliance
While Video BenchLab can be used with any existing video
streaming service, there is no readily available virtual appliance of
realistic video streaming servers that can be used by researchers to
perform media streaming experiments. Recently, in-browser
HTML 5 video playing has become standard since the switch of
all major players to HTTP streaming [19]. To provide a relevant
benchmark, we wanted a redistributable open source platform
supporting HTML5 video streaming that also included social
media features such as comments, view counts and likes.

MediaDrop [12] is a popular open source video platform that
supports HTML5 and Flash videos on most platforms. Videos can
be imported from many sources including YouTube or Amazon
S3, and replayed in any desktop browser or mobile platform. Like
modern video streaming platforms, MediaDrop offers content
management, statistics and popularity ranking and social media
aspects such as comments, Twitter and Facebook integration (see
Figure 1).

Figure 1. Screenshot of the MediaDrop server home page

A number of HTML5 video players are available and offer various
tradeoffs in terms of platform support and integration in Web
pages and browsers [3]. We decided to rely on the browser native
HTML5 video player for our MediaDrop VM. MediaDrop can
easily be reconfigured to use Javascript based players to
experiment with various streaming libraries too. We note that as a

video content management system, MediaDrop is not tied to any
specific streaming server; it supports basic HTTP streaming and it
is possible to use other HTTP-based streaming servers and
protocols with MediaDrop for additional experimentation.
We have built an Amazon EC2 virtual machine image with a
complete installation of MediaDrop ready to use. This virtual
appliance is publicly available on EC2. We also provide a script
that can automatically build a new MediaDrop VM from scratch
by downloading the required software and configuring it. This
allows researchers with their own private cloud to build custom
VMs for their cloud platform.

Importing videos through the MediaDrop Web interface is a
multistep process that involves a user uploading a video and an
administrator approving the video for it to be available for others
to stream. This process is too cumbersome for bulk video inserts
or large dataset creations. We provide tools to perform bulk
inserts of videos directly in the MediaDrop database to make them
readily available with their thumbnails. Videos can also be
converted between multiple formats during the import process
using the provided libav tools [15]. Our MediaDrop appliance
comes with a set of freely redistributable videos. The content of
the dataset is described in section 2.2.

We also provide the Ganglia monitoring tools [5] to report on
cpu, memory, disk and network utilization if the cloud
infrastructure does not already report these metrics. When
network throttling is needed, we rely on the Linux traffic
controller hierarchical token bucket (tc-htb) to limit the
MediaDrop server bandwidth.

2.2 Video datasets, tools, and workloads
While Video BenchLab allows a researcher to upload any video
dataset into the MediaDrop appliance, for ease of use, we provide
an initial video dataset for research use. All videos in our dataset
were obtained from a set of videos on Vimeo [25] that are
distributed under a Creative Commons Attribution and thus can
be used and modified by researchers without licensing restriction.
Table 1 summarizes our video dataset, which contains videos on
topics such as news, general entertainment and sports. Videos are
classified in 3 categories by their duration and are all encoded in
WebM format using the VP8 video and Vorbis audio codecs.
Longer videos are not always necessarily bigger in file size
depending on the effectiveness of the compression on the video
and audio streams.

Table 1. Video dataset specifications

Category # of videos Duration Video size
Small 20 (10SD-10HD) 0-5 min 2.9-68MB

Medium 8 (4SD-4HD) 5-10 min 20MB-73MB

Large 5 (3SD-2HD) 10min – 1H+ 18MB-203MB

Typical BenchLab workload traces include a unique request id, a
timestamp indicating when the request must be played, a client id
identifying the browser, the URL to visit as well as optional
interactions with Web elements in the visited page. The trace
format for video workloads extends the original format by adding
video manipulation commands. The supported commands are:

• play: play the video from the current position
• pause: pause the video at the current position
• change_quality(quality): changes the quality of the

video (player specific, e.g. in native HTML5 implemented as

pause/load new media file/seek to previous current
position/resume, in YouTube implemented as a call to
setPlaybackQuality). quality is one of the pre-defined values
lowest, highest, lower or higher, which changes to the
lowest, highest, next lower available and next higher available
quality, respectively.

• skip_ads: skip the in-stream advertisement (player specific,
currently only available for YouTube).

• quit: end the playing right now and proceed to the next entry
in the trace

• seek(video_position): seek the video to the given
position in seconds since the beginning of the video. The
position is defined by a numerical value or a formula using the
video length and current_position provided by the
BCR. Example:
o Seek to 1 minute into the video: seek(60)
o Seek to the middle of a video: seek(length/2)
o Jump 30 seconds: seek(current + 30)

• wait_for(timeout,[video_position]): wait for the
timeout to expire or the current video position to reach the
given value, whichever comes first. The wait_for command
should always be followed by another command. The timeout
can either be a relative value in seconds or an absolute
timestamp. The video_position parameter is defined in a
similar way as the seek command:
o Wait for the video to reach 1 minute playback within 2

minutes: wait_for(120, 60)
o Wait for the video to reach the middle of the playback with

a maximum 20% delay:
wait_for((length/2)*1.2, length/2)

o Wait until the given timestamp before executing the next
command: wait_for(‘2015-01-16 12:30:10.5’)

o Wait until the video ends: wait_for(0,length)
The default script that just plays a video until its end is as follows
(note that player_type is either html5 or youtube):
 VideoBenchLab={player_type:html5,
 commands:{play, wait_for(0,length), quit}}
Multiple browsers can be synchronized by using the timestamp
field in the trace. Recall that the trace format is:
 <request id>,<client id>,<timestamp>,<URL>,<parameter>
The following trace starts 3 clients at a 10 seconds interval, each
client going first to the YouTube homepage and 5 seconds later
playing a video (URLs are abbreviated):
1, 1, 2015-01-16 00:00:00.0, http://youtu.be,null
2, 1, 2015-01-16 00:00:05.0, http://youtu.be/…,VideoBenchLab={…}
3, 2, 2015-01-16 00:00:10.0, http://youtu.be,null
4, 2, 2015-01-16 00:00:15.0, http://youtu.be/…,VideoBenchLab={…}
5, 3, 2015-01-16 00:00:20.0, http://youtu.be,null
6, 3, 2015-01-16 00:00:25.0, http://youtu.be/…,VideoBenchLab={…}

We have created a trace generator tool that can generate
workloads traces following predefined distributions such as a Zipf
distribution [18][9]. The generator requires a list of video
metadata objects in JSON format containing the video URL,
duration, and a list of URLs of web pages containing related
videos. We provide a tool that automatically extracts that
information from the MediaDrop database to feed it to the
workload generator. By suitably choosing parameters for the
workload generation tools, a researcher can construct traces with
different number of concurrent users accessing videos from the
server with different popularity skews. Of course, a researcher is
not restricted to using our traces and may use any other trace of
their choosing for running experiments (so long as the traces
adhere to the format used by BenchLab clients).

2.3 Video BenchLab Client Runtime
A central contribution of Video BenchLab is the ability to replay
traces through real Web browsers. Major companies such as
Google and Facebook already use open source technologies like
Selenium [19] to perform functional testing using real web
browsers. These tools automate a browser to follow a script of
actions, and they are primarily used for checking that a Web
application’s interactions generate valid HTML pages. We argue
that the same technology can also be used for video performance
benchmarking.

2.3.1 Architecture overview
The Video BenchLab Client Runtime (BCR) extends the
Selenium framework with functionalities to download a video
trace, replay it via a real web Browser by issuing HTTP requests
for video, record streaming performance statistics for each page
and upload the results at the end of the replay. Unlike traditional
load injectors that work at the network level, replaying through a
Web browser accurately performs all the complex interactions
between the browser and the server. When playing videos, the
unmodified native player or plugin extensions of the browser are
used giving insights on real world performance on any platform or
software combination. This level of complexity could not be
approximated by simulators especially given the wide variety of
factors affecting performance. Through the browser, the BCR
captures the real user perceived latency including network
transfer, page processing and rendering time.
Most desktop browsers include debugging tools such as Firebug
for Firefox or the developer tools for Chrome that are able to
capture the timeline of all browser interactions while pages are
being loaded. This data can usually be stored into a HTTP
Archive (HAR) file [11]. We use the open source BrowserMob
proxy [29] developed by WebMetrics to record network activity
in HAR files. Figure 2 gives an overview of the architecture of the
BCR with a Firefox browser as an example. We also support the
Chrome and Internet Explorer browsers.

Figure 2. Video BenchLab Client Runtime (BCR) architecture
In order to benchmark HTML5 video, the BCR executes
JavaScript at regular time intervals on the video web page to
collect performance metrics (see section 2.3.2). The script
instructs the browser to record video metadata, including MIME
type, resolution, and duration, then log time, the video specific
metrics, and, if supported by the player, when the video has
stalled. The video commands included in the trace file are
executed according to the player type (currently native HTML5
and YouTube are supported). By default, the BCR plays videos

entirely and then saves the page HTML source with the log of the
video replay. These results are uploaded automatically to the
BenchLab Dashboard database at the end of the experiment.
Additionally the BCR can record screen snapshots of rendered
pages. This data is automatically uploaded at the end of the
experiment and can be visualized in the dashboard. As shown on
Figure 3, the screen snapshots can also capture errors reported by
the browser. Errors such as connection reset or invalid source
(unsupported video format) can be easily detected this way.

Figure 3. Example of screen snapshots taken during
experiments with MediaDrop (left: normal execution, middle:

network error, right: unsupported video format).

2.3.2 Performance metrics
The general performance statistics collected by the BCR during an
experiment are stored in a standard HTTP archive (HAR) format,
and include the following metrics: DNS resolution time,
connection establishment time, request failure/success/cache hit
rate, send/wait/receive time on network connections, overall page
loading time including Javascript execution and rendering time.
Figure 5 shows an example of a HAR capture during one of our
video experiment with MediaDrop.
For videos, the BCR collects current time, video position,
resolution, buffer start and end positions, and, if supported by the
player, when the video has stalled. As each player might store
these values differently, the data collection code is specific to
each video player. We have implemented data collection for the
native standard HTML5 player found in every browser and also
for the YouTube player. Data collectors can be easily adapted to
any custom Javascript video player by simply implementing an
interface that describes the values to collect.
We use the collected data to generate several metrics to assess
video performance as perceived by the user. We record the current
video position Vc and the current time T at regular intervals
(default is 1 second) during video playback. If both Vc and T
progress at the same pace, the video is playing smoothly.
We define a metric called lag defined by 𝑚𝑚𝑚 (0,∆𝑇 − ∆𝑉𝑐).
When a video lags or stop playing, Vc moves more slowly than T.
While the clock timestamps have a milliseconds precision we
usually filter out any lag value below 100ms.
Similarly we define a metric called skips that is calculated by
𝑚𝑚𝑚 (0,∆𝑉𝑐 − ∆𝑇). When the current video position moves faster
than the clock time, it means that the player is skipping parts of
the video. This condition can happen if the stream is corrupted or
the player cannot play the stream fast enough and needs to skip
frames.
We also report the video buffer size by recording the buffer start
position Bs and end position Be, buffer size being Be-Bs. Usually
players will try to cache the entire video to be able to do in-
memory replays of parts of the video that have already been
played. This means that Bs will typically not change and only Be

BenchLab Client Runtime

Native
Firefox
browser

Selenium

Firefox driver

HAR
recording

proxy

Trace Processing

Network

Storage
tra
ce HAR

#1

snap-
shot

HAR
#1 HAR
#1

Video streaming
services

Snapshot
generator

Video
instrumentation

will increase at the rate of the network download speed (though
this might not always be true as video buffering might be
decoupled from network transfers).

2.4 Running experiments with the BenchLab
Dashboard

The BenchLab Dashboard is a key component of our platform that
is used to setup and automatically run performance experiments as
well as gathering experimental results. Thus, it is the central
repository for experiments. It is built as a Java Web application
that can be deployed in any Java Web container such as Apache
Tomcat. The BenchLab Dashboard provides a Web interface to
interact with experimenters that want to create experiments using
an arbitrary number of browsers and servers. The Dashboard gives
an overview of the browsers currently connected, the experiments
(created, running or completed) and the Web traces that are
available for replay.
Video workload trace files are uploaded by the experimenter
through a Web form and stored in the Dashboard database. The
BenchLab Dashboard does not deploy, configure or monitor any
server-side software. There are a number of deployment
frameworks (Gush, WADF, JEE, .Net deployment service, etc)
and monitoring tools (Ganglia and fenxi are popular choices) that
users can choose from depending on their preferences.
Anyone can deploy a BenchLab Dashboard and therefore build
his or her own experiment repository. An experiment defines what
trace should be played and how. The user defines how many
browsers should replay the sessions with eventual constraints
(specific platform, version, location…). The experiment can start
as soon as enough clients have registered to participate in the
experiment. The Dashboard does not deploy client web browsers,
rather it waits for the browsers to connect and its scheduler
assigns them to experiments.

Figure 4. Video BenchLab experiment flow overview

Figure 4 gives an overview of the BenchLab components and how
they interact to run an experiment. The Video BenchLab Client
Runtime (BCR) starts and controls the native Web browser on the
client machine. On startup, the BCR connects the browser to a

BenchLab Dashboard (step 1 in Figure 4). When the browser
connects to the Dashboard, it provides details about the exact
browser version and platform runtime it currently executes on as
well as its IP address and location if available. If an experiment
needs this browser, the Dashboard redirects the BCR to a
download page where it automatically gets the trace for the
session it needs to play (step 2 in Figure 4). The BCR stores the
trace on the local storage and makes the Web browser regularly
poll the Dashboard to get the experiment start time. There is no
communication or clock synchronization between BCRs, they just
get a start time as a countdown in seconds from the Dashboard
that informs them ‘experiment starts in x seconds’ through a Web
form. The status of browsers is recorded by the Dashboard and
stored in a database.
When the experiment start time has been reached, the BCR plays
the trace through the Web browser monitoring each interaction
(step 3 in Figure 4). For each URL visited, the BCR records the
Web and video performance metrics described in section 2.3.2.
The results are uploaded to the Dashboard at the end of the
experiment (step 4 in Figure 4). The Dashboard provides a
number of ways of visualizing data and comparing results
between experiments. The entire database with experiment
configuration, traces and results can also be easily exported to be
shared with other researchers.
It is possible to crowd-source experiments by defining an
experiment with a large number of users (the trace must contain at
least 1 session per user). As soon as the number of users is
reached, the Dashboard automatically triggers the start of the
experiment. The Dashboard is able to process and display partial
results in case clients failed during the experiment. We show
Internet scale experiments in section 3.3 that rely on that feature.
Browsers are deployed in various data centers and experiments
start automatically as soon as enough browsers have connected to
the Dashboard.

2.5 Implementation and Platform Availability
As noted earlier, Video BenchLab is an open platform that is
designed for benchmarking streaming media workloads. Hence,
all components of the Video BenchLab software suite (see Table
2) are freely available under an open source license.

Table 2. Summary of tools in the Video BenchLab suite

Tool Description Platforms
MediaDrop Video streaming server Linux

mediaload Bulk video import for
MediaDrop Linux/python

metadump Video metadata export Linux/python

loadgen Video workload generator Linux/python

BCR Video BenchLab Client
Runtime

Firefox+Chrome on
Linux/Windows, IE

on Windows

HTML5
collector

BCR data collector for
HTML5 video players All browsers

YouTube
collector

BCR data collector for
YouTube video player All browsers

Dashboard Experiment management,
result db and analytics

Java Web container
(e.g. Tomcat)

BenchLab Dashboard

MediaDrop
Server

These components are available individually and as a packaged
platform to permit flexibility in how they are used for
experimentation. They are available for download from
SourceForge at http://sf.net/projects/benchlab. We have also
published our experimental Dashboard database with all the
results contained in this paper on SourceForge. To help with
reproducibility of experimental results, anyone can import this
database in their own Dashboard and rerun the experiments. We
have also provided Amazon EC2 images (AMIs) for MediaDrop,
BCR and Dashboard so that anyone can reproduce the
experiments conducted in this paper. Additional details of our
platform are available from the BenchLab project page at
http://lass.cs.umass.edu/projects/benchlab.

3. EXPERIMENTAL USE CASES
In this section, we present a series of experiments that illustrate
“use cases” and the types of experiments that can be run with
BenchLab using our MediaDrop appliance. Section 3.1 describes
our experimental setup and methodology. We show how video
specific metrics gathered by our platform can be used to
determine the user perceived quality of experience in section 3.2.
Finally we showcase Internet scale experiments that can be
automated and run using our platform in section 3.3.

3.1 Experimental setup and methodology
To demonstrate the type of experiments that can be run using
Video BenchLab, we deployed virtual machines on Amazon EC2
for our MediaDrop implementation, BenchLab Dashboard and all
the BCRs (BenchLab Client Runtime) running the various
browser implementations. All instances used were of type
m1.small deployed in the North Virginia data center (US East
Coast) unless indicated otherwise. Internet scales experiments
have additional deployments in other EC2 data centers.
The browsers used in the experiments are: Firefox 30 on Ubuntu
Linux 14.04 x86_64, Chrome 36.0.1985.125 on Ubuntu Linux
14.04 x86_64 and Internet Explorer 11 on Windows 7. BenchLab
client and Dashboard software was version 2.2 (including
Selenium 2.43.1, Chrome driver v2.9 and IE driver v2.43 32 bits).
MediaDrop version 0.10.3 was used with the HTML5 player
instead of the default Flash based player.
Experiments involving a single browser were performed in
isolation (only one browser at a time streaming a video from the
server). Experiments involving multiple browsers were
synchronized on start by the BenchLab Dashboard. In each trace,
we use the default script that plays a video in its entirety without
any other command.
Additionally to the BenchLab Client Runtime statistic collection,
we collect cpu, memory, disk and network information every
second during the experiment on both the client and MediaDrop
server. When network bandwidth throttling is needed we use the
Linux traffic controller hierarchical token bucket (tc-htb) on the
MediaDrop server VM to limit the bandwidth.

3.2 Video metrics analysis
When the browser requests a page from the MediaDrop server, it
not only needs to download the main HTML content but also all
the referenced resources such as CSS, Javascript and video
thumbnails. The details of these Web interactions recorded by the

BCR in the HTTP Archive (HAR) format are presented in Figure
5. The 45MB download of the video stream lasts more than 5
minutes and has been truncated from the screenshot. That level of
detail is not enough to know if the video has been playing
successfully or what the user perceived experience has been. This
is why if all HTTP requests are successful, we need video specific
instrumentation and metrics to analyze the video streaming
experience. In the next sections, we show how the video specific
metrics can help experimenter diagnose if a video played
smoothly and if not what the root cause of the issue may be.

Figure 5. Typical web interactions between the browser and

MediaDrop server when requesting a page and playing a video
through an HTTP stream.

3.2.1 Behavior with unlimited bandwidth
In our first experimental use-case, we compare the behavior of
Firefox, Chrome and Internet Explorer by playing a single SD
video of 179 seconds with no bandwidth limitation between the
client and the server. The results are shown on Figure 6.
Both Firefox (on the left) and Internet Explorer (on the right) load
the entire video in their buffer upfront and play the video. Chrome
seems to have a more conservative approach (middle graph)
where the buffer stays about 100 seconds ahead of the current
video position. The HAR view is however similar for all browsers
showing only the overall download time of the video.
When we look at the bandwidth usage at the network level, the 3
browsers download the video right away in a very similar fashion.
This means that for Chrome, the video buffer size is independent
from the network transfer. Even if more data is available, the
video buffer size only expands as the video progresses.

Figure 6. Video buffer behavior for Firefox 30, Chrome 36 and IE 11 (left to right) under normal network conditions

Recall that the buffer size is computed as the difference between
buffer end position (Be) and start position (Bs). In all cases, Bs
does not change and only Be increases until the whole video is
buffered. As desktops have enough memory to buffer even our
largest video there is no reason for the player to drop parts of the
data already played (by moving Bs) as the user might later replay
part of or the whole video.

3.2.2 Detecting replay issues
Next, we experimented with limiting the server bandwidth to find
out what would be the minimum bandwidth a browser would need
to play a video of our dataset. We chose an HD video of 6m29s
with a bit rate of 965 kbits/sec. We started to limit the video
server throughput to 1900kbps which should have been plenty for
the browsers to play the video smoothly.
We started with the Chrome browser on an EC2 m1.small
instance and obtained the results shown on Figure 7. We notice
several drops in the bandwidth usage from the server side as the
player stops fetching data when its buffer reaches a certain size.
After a very brief pause at the beginning, the video plays without
issues until the end with no lag or skips observed.

Figure 7. Chrome playing a 965kbps bitrate video with a

bandwidth limit of 1900kbps on an EC2 m1.small instance.
We then repeated the same experiment with Firefox in the same
m1.small VM and noticed anomalies during replay as shown in
Figure 8. First, we notice a number of interruptions in the
rendering of the stream highlighted by the lag metric on Figure 8.
Second, we observe 7 occurrences of parts of the video being
skipped highlighted by jumps in the skips metric. The
accumulated lag observed jointly skips is a manifestation of a

CPU starvation issue. The player cannot play the frames fast
enough and skips parts of the video to catchup with the stream.
The player skips so many frames that the 400 seconds video ends
up being played in 300 seconds. We confirmed by looking at our
CPU monitoring data that the CPU was indeed maxed out while
the video was playing during network transfers.

Figure 8. Firefox playing a 965kbps bitrate video with a

bandwidth limit of 1900kbps on an EC2 m1.small instance.

Figure 9. Firefox playing a 965kbps bitrate video with a

bandwidth limit of 1900kbps on an EC2 m3.medium instance.
To confirm that CPU was the cause of the observed performance
problems, we repeated the experiment using a larger m3.medium
EC2 instance under the same network conditions. These instances

use a High Frequency Intel Xeon E5-2670 v2 (Ivy Bridge)
processor that is about 65% faster than the one found in the
cheaper m1.small instances. The results can be seen in Figure 9.
The download bandwidth is exactly the same but now the video is
playing smoothly with no lags or skips after the startup phase.

Figure 10. Performance issues on a node deployed in South

America during an Internet scale experiment
During one of our Internet scale experiments under high
concurrency, we observed the performance shown on Figure 10.
The node was competing for network bandwidth with 23 other
browsers and had erratic network stream performance. These
extreme conditions put the player in a condition that it doesn’t
seem to be able to cope with as it skips the video much faster than
clock time. The 6.5 minute video ends up being replayed in just
140 seconds with most of its content being skipped. Video
BenchLab can push the limits of real players in real network
conditions which is useful for both video player and network
protocol developers.

3.2.3 Detecting network congestions
In this experiment, we re-use the same video as in section 3.2.1
but limit the MediaDrop server bandwidth slightly over the bitrate
of the video and induce network congestion by limiting the
bandwidth down to 100kbps for a 30 second period during the
replay.

Figure 11. Chrome 36 native HTML5 video player behavior

with an induced network congestion.

We first perform the experiment with Chrome and observe the
results shown in Figure 11. The video starts to play normally until
we reach the network congestion phase. At that point, the buffer
size stops growing and the video plays until the current video
position reaches the buffer end (Be). At that point the video stops
playing until the download resumes with the restoration of the
network bandwidth. The video then plays normally until the end.

Figure 12. Firefox 30 native HTML5 video player behavior on

an m1.small EC2 VM with an induced network congestion.
We repeat the same experiment with Firefox on an m1.small
instance and present the results in Figure 12. The CPU limitations
are still present during the download phases and characterized by
the combination of lag and skips. However, the network
congestion phase is still clearly isolable when the buffer size
plateaus and the current video position (Vc) matches the buffer
end (Be). At this point, lag increases linearly.
To eliminate the CPU related lag, we repeated the experiment
using an m3.medium instance and obtained results similar to the
ones observed with Chrome on Figure 11.

3.2.4 Summary
Traditional Web or network level metrics are not enough to
determine if a video playback in a browser is satisfactory. We
have shown that lag and skips metrics are good indicators of
abnormal video replays. When both lag and skips are observed
simultaneously, it indicates a lack of resources to play the video at
the required frame rate. When lag increases steadily and the
current video position has reached the video buffer end, it
indicates a network congestion condition. skips could also be
observed in case of a corrupted data stream but we would not
expect to see any lag in that case. These use cases illustrate how
Video BenchLab may be used to conduct experiments, analyze
results and understand client, server or network behavior.

3.3 Internet scale experiments
To illustrate the automation capabilities of Video BenchLab and
the ease of Internet scale experimentation, we deployed BCRs
with both Chrome (m1.small VM) and Firefox (m3.medium VM)
in six Amazon data centers: US East coast, US West coast,
Europe, Japan, Australia and Brazil. Our MediaDrop VM is
located in the US East coast data center as well as the BenchLab
Dashboard as illustrated on Figure 13.

Table 3. Internet scale experimental results

Region
Client side bandwidth limited to 3Mb/s per client Server side bandwidth limited to 25Mb/s

Firefox Chrome Firefox Chrome

US East

EU

Japan

Australia

Brazil

Figure 13. Overview of the Internet scale experiments with 24
browsers deployed in 6 data centers. Average observed latency

is to the MediaDrop server deployed in US East.
We conduct 2 experiments: one in which the bandwidth on each
client is limited to 3Mb/s to mimic a typical home broadband
Internet connection but the server bandwidth is not limited, a
second one where clients have unlimited bandwidth but the server
is limited to 25Mb/s. We deploy a total of 24 browsers distributed
evenly across the 6 data centers. Half of the browsers are Firefox
and the other half are Chrome, thus each data center hosts 2
Firefox and 2 Chrome BCRs. The results of both experiments are
summarized in Table 3. We only show one browser type per data
center per experiment as both browsers behave similarly overall in
the same location. Due to space constraints, we do not show the
results for the US West coast data center but the results are very
similar to the ones observed for the US East coast data center.
All BCRs play the same 6m29s HD video but the start is
staggered at a 5 second interval. The video is already in
MediaDrop’s memory cache before the start of the experiment so
that no significant disk IO disturbs the server performance during
the experiment.
When the bandwidth is limited on the client side only (first 2
columns of the table), the server bandwidth increases steadily as
each new browser starts to fetch the video. The server bandwidth
usage peaks at about 50Mb/s when the first browsers are done
downloading their video. Note that we use a staggered start every
5 seconds, so that the 24th browser starts 23x5=115 seconds after
the first browser. This explains why the server bandwidth curve is
shifted on the different client graphs. The bandwidth usage
decreases progressively as browsers complete the video
download. There is a very minimal lag at the very beginning of
the replay that is slightly higher for more remote regions but as
soon as the download is started, all browsers are able to play the
video without any noticeable lag or skip.
When the bandwidth is limited on the server side only (right most
2 columns of Table 3), the results are dramatically different. As
soon as the first browser starts, it uses the entire 25Mbps of server
bandwidth. From that point on, all browsers compete for the
server bandwidth. All browsers experience lag on startup that
increases with the distance from the server. US clients only
experience few seconds of lag whereas browsers deployed in
Australia or Japan are stalled for more than 100 seconds before
the video can start playing. The effect is more pronounced with
Firefox that has a more aggressive video buffer management.
Chrome experiences at least as much lag as Firefox in the US but
seem to do better in remote location with its less greedy approach
to video buffer management.

While this experiment illustrates the ability to run large
distributed experiments, a researcher would clearly need to run
additional experiments to better understand the effects that the
video player, network or server can have on the overall
performance at Internet scales. Video BenchLab provides the
means for researcher to perform these experimentations using real
browsers, real networks and realistic workloads and media
servers.

4. RELATED WORK
While there has been prior work in the areas of modeling,
characterization and evaluation of streaming media systems, there
is a relative dearth of benchmarking tools for streaming media
researchers. Within the computer architecture community,
PARSEC [1] and Versabench [19] are two benchmarking tools
that enable performance evaluation of streaming media
applications on modern CPUs and multiprocessor architectures.
These benchmarking tools are better suited for architecture
research and especially for measurements of a single machine,
rather than multimedia systems researchers who are evaluating an
end-to-end streaming system. Similarly the MediaBench II
benchmarking suite [12] includes a comprehensive set of tools for
evaluating video encoders and decoders, rather than entire
streaming systems. Benchmarking tools and systems for
evaluating content-based video retrieval [14] or visual search [15]
also exist although they are in a different domain from multimedia
systems research. Within the area of multimedia systems, EPFL
researchers have developed the Cloud Suite Media streaming
benchmark [5]; while this benchmark also uses open source
components such as the Darwin streaming server and the Faban
workload generator, it is primarily designed for systems that use
RTP and RTSP streaming. In contrast, Video BenchLab focuses
on HTTP streaming systems, which is the dominant protocol used
for streaming content today [19]. Video BenchLab builds upon
BenchLab [1] which was designed for web applications and
provides similar benchmarking features and benefits for streaming
media servers and client-based experimental research.
There has been other related research in the areas of workload
characterization and workload generation. G-ISMO [22] is a tool
for generating Internet streaming media files and workloads.
Techniques for generating HTTP streaming workloads for
evaluating server performance have been proposed in [19]; the
generated workloads are replayed using the httperf tool. Both
efforts are complementary to our work in that the generated
workload traces can be used by Video BenchLab to inject
workloads to a server. Further, unlike replay tools like httperf, our
platform uses real web browsers to issue requests and play videos,
which yields a more representative HTTP-based streaming
workload at the server. Datasets for multimedia benchmarking
also exist [12] and numerous such datasets have been released as
part of the dataset track within the ACM Multimedia Systems
conference [1]. Numerous researchers have characterized the
nature of videos found on the Internet. Characteristics of stored
videos on the Internet were studied in [19], while live streaming
workloads have been studied in [25]. YouTube traffic has been
characterized in [20] and [30] while streaming media workloads
and Berkeley media workloads have been characterized in [5] and
[25]. Companies such as Google regularly measure video quality
to different ISPs and publish statistics as a Video Quality report
[9]. Finally, in the area of modeling, streaming media servers and
their workloads have been modeled in detail in [5] which is
complementary to our effort on benchmarking.

São Paolo 124ms
Sydney 215ms

Tokyo 166ms

Dublin 84ms

California
88ms

Virginia
0.5ms

5. CONCLUSIONS
Motivated by the need to develop flexible, open performance
evaluation tools for streaming media, in this paper we presented
the design and implementation of video BenchLab, an open
platform tailored for multimedia systems researchers. Components
of our platform include a MediaDrop video server, a suite of tools
to bulk insert videos and generate streaming media workload, a
dataset of freely available video, and a client runtime to replay
videos in the native video players of real Web browsers such as
Firefox, Chrome and Internet Explorer. Finally, our platform also
provides a Dashboard to manage and automate experiments,
collect results and perform analytics to compare performance
between experiments. We presented numerous illustrative use
cases to demonstrate what kinds of experiments could be run
using our platform and how the results could be used to better
understand system behavior. All the software, datasets, workloads
and results used in this paper are made freely available and we
hope that the Video BenchLab platform will enable more realistic
and scalable experimentation within the research community.

Acknowledgements: This research and the development of
BenchLab and Video BenchLab is supported in part by a National
Science Foundation grant 1339839.

6. REFERENCES
[1] ACM Multimedia Systems conference Dataset archive,

http://traces.cs.umass.edu/index.php/Mmsys/Mmsys
[2] Bienia, Christian, Sanjeev Kumar, Jaswinder Pal Singh, and

Kai Li. "The PARSEC benchmark suite: Characterization
and architectural implications." In Proceedings of the 17th
international ACM conference on Parallel architectures and
compilation techniques, pp. 72-81. 2008.

[3] Philip Bräunlich and Gerrit van Aaken – HTML5 Video
Player Comparison – http://praenanz.de, last update 2014-
07-09.

[4] Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood and
Prashant Shenoy – BenchLab: An Open Testbed for Realistic
Benchmarking of Web Applications – Proceedings of 2nd
USENIX Conference on Web Application Development
(WebApps '11), June 15-16, 2011, Portland, OR.

[5] Cherkasova, Ludmila, and Loren Staley. "Building a
Performance Model of Streaming Media Applications in
Utility Data Center Environment." In CCGRID, vol. 3, p. 52.
2003.

[6] Chesire, Maureen, Alec Wolman, Geoffrey M. Voelker, and
Henry M. Levy. "Measurement and Analysis of a Streaming
Media Workload." In USITS, vol. 1, pp. 1-1. 2001.

[7] The CloudSuite Media Streaming Benchmark,
http://parsa.epfl.ch/cloudsuite/streaming.html, 2012.

[8] Ganglia Monitoring system - http://ganglia.sourceforge.net/.
[9] Google Video Quality Report,

https://www.google.com/get/videoqualityreport/
[10] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban

Mahanti– YouTube Traffic Characterization: A View From
the Edge – IMC’07, October 24-26, 2007, San Diego, CA.

[11] HTTP Archive specification (HAR) v1.2 -
http://www.softwareishard.com/blog/har-12-spec/.

[12] M. Larson, M. Soleymani, M. Eskevich, P. Serdyukov, R.
Ordelman, and G. Jones. "The community and the crowd:
Developing large-scale data collections for multimedia
benchmarking." IEEE Multimedia, (2012).

[13] C. Lee, P. Miodrag, and W. H. Mangione-Smith.
"MediaBench: a tool for evaluating and synthesizing
multimedia and communications systems." In Proceedings of
the 30th annual ACM/IEEE international symposium on
Microarchitecture, pp. 330-335. 1997.

[14] C. Leung, and H. Ho-Shing Ip. "Benchmarking for content-
based visual information search." In Advances in Visual
Information Systems, pp. 442-456. Springer 2000.

[15] Libav - Open source audio and video processing tools -
http://libav.org/.

[16] S. Marchand-Maillet, and M. Worring. "Benchmarking
image and video retrieval: an overview." In Proceedings of
the 8th ACM international workshop on Multimedia
information retrieval, pp. 297-300, 2006.

[17] MediaDrop - http://mediadrop.net/.
[18] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-

Yeol Ahn, and Sue Moon – I Tube, You Tube, Everybody
Tubes: Analyzing the World’s Largest User Generated
Content Video System – IMC’07, October 24-26, 2007, San
Diego, CA.

[19] Li, Mingzhe, Mark Claypool, Robert Kinicki, and James
Nichols. "Characteristics of streaming media stored on the
Web." ACM Transactions on Internet Technology (TOIT) 5,
no. 4: 601-626, 2005.

[20] Gill, Phillipa, Martin Arlitt, Zongpeng Li, and Anirban
Mahanti. "Youtube traffic characterization: a view from the
edge." In Proceedings of the 7th ACM Internet Measurement
Conference, pp. 15-28. 2007.

[21] Rabbah, Rodric M., Ian Bratt, Krste Asanovic, and Anant
Agarwal. "Versatility and versabench: A new metric and a
benchmark suite for flexible architectures." MIT LCS
Technical Report MIT-CSAIL-TR-2004-039, 2004.

[22] Jin, Shudong, and Azer Bestavros. "Gismo: a generator of
internet streaming media objects and workloads." ACM
SIGMETRICS Performance Evaluation Review 29, no. 3
pages 2-10 2001.

[23] Jim Summers, Tim Brecht, Derek Eager, and Bernard Wong
“Methodologies for generating HTTP streaming video
workloads to evaluate web server performance”, Proceedings
of the 5th Annual International Systems and Storage
Conference (SYSTOR '12). New York, NY, 2012.

[24] Selenium - http://seleniumhq.org/.
[25] Slingerland, Nathan T., and Alan Jay Smith. "Design and

characterization of the Berkeley multimedia workload."
Multimedia Systems 8, no. 4: 315-327, 2002.

[26] Standard Performance Evaluation Corporation (SPEC)
Benchmarks, www.spec.org

[27] Veloso, Eveline, Virgilio Almeida, Wagner Meira, Azer
Bestavros, and Shudong Jin. "A hierarchical characterization
of a live streaming media workload." In Proceedings of the
2nd ACM SIGCOMM Workshop on Internet measurment, pp.
117-130. 2002.

[28] Vimeo Creative Commons / Attribution Licensed video -
http://vimeo.com/creativecommons/by.

[29] WebMetrics BrowserMob proxy -
http://opensource.webmetrics.com/browsermob-proxy/.

[30] Michael Zink, Kyoungwon Suh, Yu Gu, and Jim Kurose,
Characteristics of YouTube Network Traffic at a Campus
Network - Measurements, Models, and Implications. Elsevier
Computer Networks. Vol. 53, No. 4, March 2009.

http://dx.doi.org/10.1016/j.comnet.2008.09.022
http://dx.doi.org/10.1016/j.comnet.2008.09.022

	1. INTRODUCTION
	2. VIDEO BENCHLAB
	2.1 MediaDrop Virtual Appliance
	2.2 Video datasets, tools, and workloads
	2.3 Video BenchLab Client Runtime
	2.3.1 Architecture overview
	2.3.2 Performance metrics

	2.4 Running experiments with the BenchLab Dashboard
	2.5 Implementation and Platform Availability

	3. EXPERIMENTAL USE CASES
	3.1 Experimental setup and methodology
	3.2 Video metrics analysis
	3.2.1 Behavior with unlimited bandwidth
	3.2.2 Detecting replay issues
	3.2.3 Detecting network congestions
	3.2.4 Summary

	3.3 Internet scale experiments

	4. RELATED WORK
	5. CONCLUSIONS
	6. REFERENCES

