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ABSTRACT 
In this paper, we present an open, flexible and realistic 
benchmarking platform named Video BenchLab to measure the 
performance of streaming media workloads. While Video 
BenchLab can be used with any existing media server, we provide 
a set of tools for researchers to experiment with their own 
platform and protocols. The components include a MediaDrop 
video server, a suite of tools to bulk insert videos and generate 
streaming media workloads, a dataset of freely available video and 
a client runtime to replay videos in the native video players of real 
Web browsers such as Firefox, Chrome and Internet Explorer. We 
define simple metrics that are able to capture the quality of video 
playback and identify issues that can happen during video replay. 
Finally, we provide a Dashboard to manage experiments, collect 
results and perform analytics to compare performance between 
experiments. 
We present a series of experiments with Video BenchLab to 
illustrate how the video specific metrics can be used to measure 
the user perceived experience in real browsers when streaming 
videos. We also show Internet scale experiments by deploying 
clients in data centers distributed all over the globe. All the 
software, datasets, workloads and results used in this paper are 
made freely available on SourceForge for anyone to reuse and 
expand. 

Categories and Subject Descriptors 
D.2.5 [Testing and Debugging]: Testing tools, .D 2.8 [Metrics]: 
Performance measures. 

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
Benchmarking, Video, Streaming, Web browsers. 

1. INTRODUCTION 
In just over two decades, streaming media has become ubiquitous 
in our digital lives. Ordinary users are now able to create 
streaming media content using ordinary smartphones or 
inexpensive digital camcorders. Online services such as YouTube, 
Netflix and live streaming services such as Justin.tv provide a 
broad variety of content for our entertainment. Today online video 
is often viewed from a range of mobile devices such as phones or 
tablets as well as larger displays such as TVs connected to 
Internet streaming devices. 

Although streaming media has gone mainstream, it continues to 
raise new opportunities and research challenges, and multimedia 
systems researchers have been working on a range of topics from 
DASH protocols, caching and content distribution, and clustered 
media servers. New topics such as the use of cloud computing and 
mobile computing in the context of streaming have emerged in 
recent years. While research on multimedia systems continues to 
flourish, researchers face several hurdles in carrying out 
experimental aspects of this research. There is a dearth of 
streaming media benchmarking tools to measure the performance 
of servers, clients and the network; while a few commercial 
benchmarking tools exist [26], they present difficulties for free 
research use or may not be amenable to modifications. The dataset 
track at the ACM Multimedia Systems conferences has been 
instrumental in gathering numerous open datasets for research use 
[1], but realistic performance evaluation involves more than 
datasets and traces—tools to easily set up experiments, generate 
workloads, and gather results are needed, especially when 
experiments run on myriad types of client devices and remote 
servers or cloud systems. In the absence of such tools, a 
researcher is left with the option of using homegrown tools or 
cumbersome manual experimentation.  

The BenchLab project seeks to address these limitations by 
designing an open, freely-available platform for realistic 
benchmarking of servers applications. While BenchLab was 
initially designed to support web-based applications and services 
(e.g., multi-tier web applications accessed from browser-based 
clients), in this paper we describe Video BenchLab, an enhanced 
platform that provides similar functions for streaming media 
servers and protocols accessed via browser-based players. Our 
overall goals are to provide an open, flexible and realistic 
environment to generate and inject client streaming workloads 
onto servers to enable careful experimental evaluation of the 
performance of streaming servers, clients and network protocols. 
Towards this end, Video BenchLab uses real web browsers 
running real video players to request HTTP streaming content 
from the server. The platform supports desktop-based, mobile 
phone-based and tablet-based clients for generating workloads. A 
key goal of Video BenchLab is to enable automation for running 
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complex experiments where clients, servers or both may be 
distributed or running on remote machines such as cloud servers; 
an experiment comprises a set of clients that are controlled 
remotely by the platform and provided with a video request trace 
that they then inject on the specified server or set of servers. The 
content is streamed to HTML5 players supported by modern 
browsers and a range of statistics are gathered and uploaded to a 
central database. Real user behavior when watching video content 
such as pausing, seeking, changing video quality or clicking on 
related videos can be simulated as part of the trace replay. 
BenchLab provides the ability to inject requests onto real servers 
(e.g., YouTube) and also provides a synthetic server backend 
based on MediaDrop that emulates a YouTube-like system on 
small scale. Our goal is to enable a range of performance 
evaluation experiments related to server design, streaming 
protocol performance, network performance and client-side 
performance. Finally, Video BenchLab includes new tools that 
permit analysis of results across different runs of an experiment. 
We believe that the open nature of the BenchLab platform makes 
it an attractive choice for multimedia systems researchers for use 
in their own research and experimentation. 

In designing and implementing Video BenchLab, this paper 
makes the following contributions: 

1) Platform: Video BenchLab brings the many benefits of the 
original BenchLab platform to streaming media performance 
evaluation. Like BenchLab, Video BenchLab is an open 
platform constructed using open-source components; 
researchers are free to use the entire platform for running and 
automating experiments, or any subset of BenchLab’s tools.  

2) Server backend: We design a video server appliance that is 
based on the open MediaDrop platform that seeks to emulate 
a YouTube-like system that enables users to upload content, 
view uploaded content as well as related videos. MediaDrop 
is a content manager rather than a streaming server and we 
envision that researcher will be able to “plug in” their own 
streaming protocols into the platform (e.g., a new DASH 
protocol) when using Video BenchLab in their research. A 
researcher using Video BenchLab is not restricted to using 
our server backend—indeed any other HTTP streaming 
server could be used as a backend, and it is even possible to 
use existing services such as YouTube as the server for 
experimentation.  

3) Video dataset and tools: We provide tools for researchers to 
efficiently upload any video dataset of their choice into our 
MediaDrop-based server backend for their experiments. In 
addition, we provide a virtual machine appliance where 
MediaDrop is pre-loaded with a set of videos that are freely 
available without licensing restrictions; both desktop and 
mobile versions of these videos are available to enable 
flexible experimentation. While Video BenchLab is able to 
replay any request trace that is provided by a researcher, we 
also provide tools to create custom request traces that are 
tailored to the content loaded on the server, with the ability 
to vary statistical properties of the traces. 

4) Experimental Use Cases: Finally we present numerous use 
case scenarios to illustrate how a researcher might use Video 
BenchLab in their research by showing what types of 
experiments can be run, and how these results might be used 
to understand the behavior of the client, server or the 
network. We also show how Video BenchLab enables 

experimental results to be gathered, analyzed and compared 
and used for what-if analyses. 

The rest of this paper is structured as follows. We present Video 
BenchLab and its different components in section 2. We describe 
different usage scenarios and experimental results in section 3. 
Section 4 discusses related work and we conclude in section 5. 

2. VIDEO BENCHLAB 
Video BenchLab provides multiple components and tools for 
researchers to experiment with media streaming environments: a 
streaming server virtual appliance (section 2.1), video data sets 
and workload generators to exercise these datasets (section 2.2), a 
client runtime to play videos in existing Web browsers using their 
native HTML5 players (section 2.3) and a Web Application 
hosting a database to define experiments, collect results and 
provide analytics (section 2.4). 

2.1 MediaDrop Virtual Appliance 
While Video BenchLab can be used with any existing video 
streaming service, there is no readily available virtual appliance of 
realistic video streaming servers that can be used by researchers to 
perform media streaming experiments. Recently, in-browser 
HTML 5 video playing has become standard since the switch of 
all major players to HTTP streaming [19]. To provide a relevant 
benchmark, we wanted a redistributable open source platform 
supporting HTML5 video streaming that also included social 
media features such as comments, view counts and likes. 

MediaDrop [12] is a popular open source video platform that 
supports HTML5 and Flash videos on most platforms. Videos can 
be imported from many sources including YouTube or Amazon 
S3, and replayed in any desktop browser or mobile platform. Like 
modern video streaming platforms, MediaDrop offers content 
management, statistics and popularity ranking and social media 
aspects such as comments, Twitter and Facebook integration (see 
Figure 1). 

 
Figure 1. Screenshot of the MediaDrop server home page 

A number of HTML5 video players are available and offer various 
tradeoffs in terms of platform support and integration in Web 
pages and browsers [3]. We decided to rely on the browser native 
HTML5 video player for our MediaDrop VM. MediaDrop can 
easily be reconfigured to use Javascript based players to 
experiment with various streaming libraries too. We note that as a 



video content management system, MediaDrop is not tied to any 
specific streaming server; it supports basic HTTP streaming and it 
is possible to use other HTTP-based streaming servers and 
protocols with MediaDrop for additional experimentation.  
We have built an Amazon EC2 virtual machine image with a 
complete installation of MediaDrop ready to use. This virtual 
appliance is publicly available on EC2. We also provide a script 
that can automatically build a new MediaDrop VM from scratch 
by downloading the required software and configuring it. This 
allows researchers with their own private cloud to build custom 
VMs for their cloud platform. 

Importing videos through the MediaDrop Web interface is a 
multistep process that involves a user uploading a video and an 
administrator approving the video for it to be available for others 
to stream. This process is too cumbersome for bulk video inserts 
or large dataset creations. We provide tools to perform bulk 
inserts of videos directly in the MediaDrop database to make them 
readily available with their thumbnails. Videos can also be 
converted between multiple formats during the import process 
using the provided libav tools [15]. Our MediaDrop appliance 
comes with a set of freely redistributable videos. The content of 
the dataset is described in section 2.2. 

We also provide the Ganglia monitoring tools [5] to report on 
cpu, memory, disk and network utilization if the cloud 
infrastructure does not already report these metrics. When 
network throttling is needed, we rely on the Linux traffic 
controller hierarchical token bucket (tc-htb) to limit the 
MediaDrop server bandwidth. 

2.2 Video datasets, tools, and workloads 
While Video BenchLab allows a researcher to upload any video 
dataset into the MediaDrop appliance, for ease of use, we provide 
an initial video dataset for research use. All videos in our dataset 
were obtained from a set of videos on Vimeo [25] that are 
distributed under a Creative Commons Attribution and thus can 
be used and modified by researchers without licensing restriction. 
Table 1 summarizes our video dataset, which contains videos on 
topics such as news, general entertainment and sports. Videos are 
classified in 3 categories by their duration and are all encoded in 
WebM format using the VP8 video and Vorbis audio codecs. 
Longer videos are not always necessarily bigger in file size 
depending on the effectiveness of the compression on the video 
and audio streams. 

Table 1. Video dataset specifications 

Category # of videos Duration Video size  
Small 20 (10SD-10HD) 0-5 min 2.9-68MB 

Medium 8 (4SD-4HD) 5-10 min 20MB-73MB 

Large 5 (3SD-2HD) 10min – 1H+ 18MB-203MB 

Typical BenchLab workload traces include a unique request id, a 
timestamp indicating when the request must be played, a client id 
identifying the browser, the URL to visit as well as optional 
interactions with Web elements in the visited page. The trace 
format for video workloads extends the original format by adding 
video manipulation commands. The supported commands are: 

• play: play the video from the current position 
• pause: pause the video at the current position 
• change_quality(quality): changes the quality of the 

video (player specific, e.g. in native HTML5 implemented as 

pause/load new media file/seek to previous current 
position/resume, in YouTube implemented as a call to 
setPlaybackQuality). quality is one of the pre-defined values 
lowest, highest, lower or higher, which changes to the 
lowest, highest, next lower available and next higher available 
quality, respectively. 

• skip_ads: skip the in-stream advertisement (player specific, 
currently only available for YouTube). 

• quit: end the playing right now and proceed to the next entry 
in the trace 

• seek(video_position): seek the video to the given 
position in seconds since the beginning of the video. The 
position is defined by a numerical value or a formula using the 
video length and current_position provided by the 
BCR. Example:  
o Seek to 1 minute into the video: seek(60) 
o Seek to the middle of a video: seek(length/2) 
o Jump 30 seconds: seek(current + 30) 

• wait_for(timeout,[video_position]): wait for the 
timeout to expire or the current video position to reach the 
given value, whichever comes first. The wait_for command 
should always be followed by another command. The timeout 
can either be a relative value in seconds or an absolute 
timestamp. The video_position  parameter is defined in a 
similar way as the seek command: 
o Wait for the video to reach 1 minute playback within 2 

minutes: wait_for(120, 60) 
o Wait for the video to reach the middle of the playback with 

a maximum 20% delay: 
wait_for((length/2)*1.2, length/2) 

o Wait until the given timestamp before executing the next 
command: wait_for(‘2015-01-16 12:30:10.5’) 

o Wait until the video ends: wait_for(0,length) 
The default script that just plays a video until its end is as follows 
(note that player_type is either html5 or youtube): 
  VideoBenchLab={player_type:html5, 
    commands:{play, wait_for(0,length), quit}} 
Multiple browsers can be synchronized by using the timestamp 
field in the trace. Recall that the trace format is: 
 <request id>,<client id>,<timestamp>,<URL>,<parameter> 
The following trace starts 3 clients at a 10 seconds interval, each 
client going first to the YouTube homepage and 5 seconds later 
playing a video (URLs are abbreviated): 
1, 1, 2015-01-16 00:00:00.0, http://youtu.be,null 
2, 1, 2015-01-16 00:00:05.0, http://youtu.be/…,VideoBenchLab={…} 
3, 2, 2015-01-16 00:00:10.0, http://youtu.be,null 
4, 2, 2015-01-16 00:00:15.0, http://youtu.be/…,VideoBenchLab={…} 
5, 3, 2015-01-16 00:00:20.0, http://youtu.be,null 
6, 3, 2015-01-16 00:00:25.0, http://youtu.be/…,VideoBenchLab={…} 

We have created a trace generator tool that can generate 
workloads traces following predefined distributions such as a Zipf 
distribution [18][9]. The generator requires a list of video 
metadata objects in JSON format containing the video URL, 
duration, and a list of URLs of web pages containing related 
videos. We provide a tool that automatically extracts that 
information from the MediaDrop database to feed it to the 
workload generator. By suitably choosing parameters for the 
workload generation tools, a researcher can construct traces with 
different number of concurrent users accessing videos from the 
server with different popularity skews. Of course, a researcher is 
not restricted to using our traces and may use any other trace of 
their choosing for running experiments (so long as the traces 
adhere to the format used by BenchLab clients). 



2.3 Video BenchLab Client Runtime 
A central contribution of Video BenchLab is the ability to replay 
traces through real Web browsers. Major companies such as 
Google and Facebook already use open source technologies like 
Selenium [19] to perform functional testing using real web 
browsers. These tools automate a browser to follow a script of 
actions, and they are primarily used for checking that a Web 
application’s interactions generate valid HTML pages. We argue 
that the same technology can also be used for video performance 
benchmarking.  

2.3.1 Architecture overview 
The Video BenchLab Client Runtime (BCR) extends the 
Selenium framework with functionalities to download a video 
trace, replay it via a real web Browser by issuing HTTP requests 
for video, record streaming performance statistics for each page 
and upload the results at the end of the replay. Unlike traditional 
load injectors that work at the network level, replaying through a 
Web browser accurately performs all the complex interactions 
between the browser and the server. When playing videos, the 
unmodified native player or plugin extensions of the browser are 
used giving insights on real world performance on any platform or 
software combination. This level of complexity could not be 
approximated by simulators especially given the wide variety of 
factors affecting performance. Through the browser, the BCR 
captures the real user perceived latency including network 
transfer, page processing and rendering time. 
Most desktop browsers include debugging tools such as Firebug 
for Firefox or the developer tools for Chrome that are able to 
capture the timeline of all browser interactions while pages are 
being loaded. This data can usually be stored into a HTTP 
Archive (HAR) file [11]. We use the open source BrowserMob 
proxy [29] developed by WebMetrics to record network activity 
in HAR files. Figure 2 gives an overview of the architecture of the 
BCR with a Firefox browser as an example. We also support the 
Chrome and Internet Explorer browsers. 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Video BenchLab Client Runtime (BCR) architecture 
In order to benchmark HTML5 video, the BCR executes 
JavaScript at regular time intervals on the video web page to 
collect performance metrics (see section 2.3.2). The script 
instructs the browser to record video metadata, including MIME 
type, resolution, and duration, then log time, the video specific 
metrics, and, if supported by the player, when the video has 
stalled. The video commands included in the trace file are 
executed according to the player type (currently native HTML5 
and YouTube are supported). By default, the BCR plays videos 

entirely and then saves the page HTML source with the log of the 
video replay. These results are uploaded automatically to the 
BenchLab Dashboard database at the end of the experiment. 
Additionally the BCR can record screen snapshots of rendered 
pages. This data is automatically uploaded at the end of the 
experiment and can be visualized in the dashboard. As shown on 
Figure 3, the screen snapshots can also capture errors reported by 
the browser. Errors such as connection reset or invalid source 
(unsupported video format) can be easily detected this way. 
 
 
 

 
 
 

Figure 3. Example of screen snapshots taken during 
experiments with MediaDrop (left: normal execution, middle: 

network error, right: unsupported video format). 

2.3.2 Performance metrics 
The general performance statistics collected by the BCR during an 
experiment are stored in a standard HTTP archive (HAR) format, 
and include the following metrics: DNS resolution time, 
connection establishment time, request failure/success/cache hit 
rate, send/wait/receive time on network connections, overall page 
loading time including Javascript execution and rendering time. 
Figure 5 shows an example of a HAR capture during one of our 
video experiment with MediaDrop. 
For videos, the BCR collects current time, video position, 
resolution, buffer start and end positions, and, if supported by the 
player, when the video has stalled. As each player might store 
these values differently, the data collection code is specific to 
each video player. We have implemented data collection for the 
native standard HTML5 player found in every browser and also 
for the YouTube player. Data collectors can be easily adapted to 
any custom Javascript video player by simply implementing an 
interface that describes the values to collect. 
We use the collected data to generate several metrics to assess 
video performance as perceived by the user. We record the current 
video position Vc and the current time T at regular intervals 
(default is 1 second) during video playback. If both Vc and T 
progress at the same pace, the video is playing smoothly. 
We define a metric called lag defined by 𝑚𝑚𝑚 (0,∆𝑇 − ∆𝑉𝑐). 
When a video lags or stop playing, Vc moves more slowly than T. 
While the clock timestamps have a milliseconds precision we 
usually filter out any lag value below 100ms. 
Similarly we define a metric called skips that is calculated by 
𝑚𝑚𝑚 (0,∆𝑉𝑐 − ∆𝑇). When the current video position moves faster 
than the clock time, it means that the player is skipping parts of 
the video. This condition can happen if the stream is corrupted or 
the player cannot play the stream fast enough and needs to skip 
frames. 
We also report the video buffer size by recording the buffer start 
position Bs and end position Be, buffer size being Be-Bs. Usually 
players will try to cache the entire video to be able to do in-
memory replays of parts of the video that have already been 
played. This means that Bs will typically not change and only Be 
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will increase at the rate of the network download speed (though 
this might not always be true as video buffering might be 
decoupled from network transfers). 

2.4 Running experiments with the BenchLab 
Dashboard  

The BenchLab Dashboard is a key component of our platform that 
is used to setup and automatically run performance experiments as 
well as gathering experimental results. Thus, it is the central 
repository for experiments. It is built as a Java Web application 
that can be deployed in any Java Web container such as Apache 
Tomcat. The BenchLab Dashboard provides a Web interface to 
interact with experimenters that want to create experiments using 
an arbitrary number of browsers and servers. The Dashboard gives 
an overview of the browsers currently connected, the experiments 
(created, running or completed) and the Web traces that are 
available for replay. 
Video workload trace files are uploaded by the experimenter 
through a Web form and stored in the Dashboard database. The 
BenchLab Dashboard does not deploy, configure or monitor any 
server-side software. There are a number of deployment 
frameworks (Gush, WADF, JEE, .Net deployment service, etc) 
and monitoring tools (Ganglia and fenxi are popular choices) that 
users can choose from depending on their preferences.  
Anyone can deploy a BenchLab Dashboard and therefore build 
his or her own experiment repository. An experiment defines what 
trace should be played and how. The user defines how many 
browsers should replay the sessions with eventual constraints 
(specific platform, version, location…). The experiment can start 
as soon as enough clients have registered to participate in the 
experiment. The Dashboard does not deploy client web browsers, 
rather it waits for the browsers to connect and its scheduler 
assigns them to experiments. 
 

 
Figure 4. Video BenchLab experiment flow overview 

Figure 4 gives an overview of the BenchLab components and how 
they interact to run an experiment. The Video BenchLab Client 
Runtime (BCR) starts and controls the native Web browser on the 
client machine. On startup, the BCR connects the browser to a 

BenchLab Dashboard (step 1 in Figure 4). When the browser 
connects to the Dashboard, it provides details about the exact 
browser version and platform runtime it currently executes on as 
well as its IP address and location if available. If an experiment 
needs this browser, the Dashboard redirects the BCR to a 
download page where it automatically gets the trace for the 
session it needs to play (step 2 in Figure 4). The BCR stores the 
trace on the local storage and makes the Web browser regularly 
poll the Dashboard to get the experiment start time. There is no 
communication or clock synchronization between BCRs, they just 
get a start time as a countdown in seconds from the Dashboard 
that informs them ‘experiment starts in x seconds’ through a Web 
form. The status of browsers is recorded by the Dashboard and 
stored in a database. 
When the experiment start time has been reached, the BCR plays 
the trace through the Web browser monitoring each interaction 
(step 3 in Figure 4). For each URL visited, the BCR records the 
Web and video performance metrics described in section 2.3.2. 
The results are uploaded to the Dashboard at the end of the 
experiment (step 4 in Figure 4). The Dashboard provides a 
number of ways of visualizing data and comparing results 
between experiments. The entire database with experiment 
configuration, traces and results can also be easily exported to be 
shared with other researchers. 
It is possible to crowd-source experiments by defining an 
experiment with a large number of users (the trace must contain at 
least 1 session per user). As soon as the number of users is 
reached, the Dashboard automatically triggers the start of the 
experiment. The Dashboard is able to process and display partial 
results in case clients failed during the experiment. We show 
Internet scale experiments in section 3.3 that rely on that feature. 
Browsers are deployed in various data centers and experiments 
start automatically as soon as enough browsers have connected to 
the Dashboard. 

2.5 Implementation and Platform Availability 
As noted earlier, Video BenchLab is an open platform that is 
designed for benchmarking streaming media workloads. Hence, 
all components of the Video BenchLab software suite (see Table 
2) are freely available under an open source license.  

Table 2. Summary of tools in the Video BenchLab suite 

Tool Description Platforms 
MediaDrop Video streaming server Linux 

mediaload Bulk video import for 
MediaDrop Linux/python 

metadump Video metadata export Linux/python 

loadgen Video workload generator Linux/python 

BCR Video BenchLab Client 
Runtime 

Firefox+Chrome on 
Linux/Windows, IE 

on Windows 

HTML5 
collector 

BCR data collector for 
HTML5 video players All browsers 

YouTube 
collector 

BCR data collector for 
YouTube video player All browsers 

Dashboard Experiment management, 
result db and analytics 

Java Web container 
(e.g. Tomcat) 

BenchLab Dashboard 

MediaDrop 
Server 



These components are available individually and as a packaged 
platform to permit flexibility in how they are used for 
experimentation. They are available for download from 
SourceForge at http://sf.net/projects/benchlab. We have also 
published our experimental Dashboard database with all the 
results contained in this paper on SourceForge. To help with 
reproducibility of experimental results, anyone can import this 
database in their own Dashboard and rerun the experiments. We 
have also provided Amazon EC2 images (AMIs) for MediaDrop, 
BCR and Dashboard so that anyone can reproduce the 
experiments conducted in this paper. Additional details of our 
platform are available from the BenchLab project page at 
http://lass.cs.umass.edu/projects/benchlab. 

3. EXPERIMENTAL USE CASES 
In this section, we present a series of experiments that illustrate 
“use cases” and the types of experiments that can be run with 
BenchLab using our MediaDrop appliance. Section 3.1 describes 
our experimental setup and methodology. We show how video 
specific metrics gathered by our platform can be used to 
determine the user perceived quality of experience in section 3.2. 
Finally we showcase Internet scale experiments that can be 
automated and run using our platform in section 3.3. 

3.1 Experimental setup and methodology 
To demonstrate the type of  experiments that can be run using 
Video BenchLab, we  deployed virtual machines on Amazon EC2 
for our MediaDrop implementation, BenchLab Dashboard and all 
the BCRs (BenchLab Client Runtime) running the various 
browser implementations. All instances used were of type 
m1.small deployed in the North Virginia data center (US East 
Coast) unless indicated otherwise. Internet scales experiments 
have additional deployments in other EC2 data centers. 
The browsers used in the experiments are: Firefox 30 on Ubuntu 
Linux 14.04 x86_64, Chrome 36.0.1985.125 on Ubuntu Linux 
14.04 x86_64 and Internet Explorer 11 on Windows 7. BenchLab 
client and Dashboard software was version 2.2 (including 
Selenium 2.43.1, Chrome driver v2.9 and IE driver v2.43 32 bits). 
MediaDrop version 0.10.3 was used with the HTML5 player 
instead of the default Flash based player. 
Experiments involving a single browser were performed in 
isolation (only one browser at a time streaming a video from the 
server). Experiments involving multiple browsers were 
synchronized on start by the BenchLab Dashboard. In each trace, 
we use the default script that plays a video in its entirety without 
any other command. 
Additionally to the BenchLab Client Runtime statistic collection, 
we collect cpu, memory, disk and network information every 
second during the experiment on both the client and MediaDrop 
server. When network bandwidth throttling is needed we use the 
Linux traffic controller hierarchical token bucket (tc-htb) on the 
MediaDrop server VM to limit the bandwidth. 

3.2 Video metrics analysis 
When the browser requests a page from the MediaDrop server, it 
not only needs to download the main HTML content but also all 
the referenced resources such as CSS, Javascript and video 
thumbnails. The details of these Web interactions recorded by the 

BCR in the HTTP Archive (HAR) format are presented in Figure 
5. The 45MB download of the video stream lasts more than 5 
minutes and has been truncated from the screenshot. That level of 
detail is not enough to know if the video has been playing 
successfully or what the user perceived experience has been. This 
is why if all HTTP requests are successful, we need video specific 
instrumentation and metrics to analyze the video streaming 
experience. In the next sections, we show how the video specific 
metrics can help experimenter diagnose if a video played 
smoothly and if not what the root cause of the issue may be. 

 
Figure 5. Typical web interactions between the browser and 

MediaDrop server when requesting a page and playing a video 
through an HTTP stream. 

3.2.1 Behavior with unlimited bandwidth 
In our first experimental use-case, we compare the behavior of 
Firefox, Chrome and Internet Explorer by playing a single SD 
video of 179 seconds with no bandwidth limitation between the 
client and the server. The results are shown on Figure 6.  
Both Firefox (on the left) and Internet Explorer (on the right) load 
the entire video in their buffer upfront and play the video. Chrome 
seems to have a more conservative approach (middle graph) 
where the buffer stays about 100 seconds ahead of the current 
video position. The HAR view is however similar for all browsers 
showing only the overall download time of the video. 
When we look at the bandwidth usage at the network level, the 3 
browsers download the video right away in a very similar fashion. 
This means that for Chrome, the video buffer size is independent 
from the network transfer. Even if more data is available, the 
video buffer size only expands as the video progresses. 



 
Figure 6. Video buffer behavior for Firefox 30, Chrome 36 and IE 11 (left to right) under normal network conditions 

 
Recall that the buffer size is computed as the difference between 
buffer end position (Be) and start position (Bs). In all cases, Bs 
does not change and only Be increases until the whole video is 
buffered. As desktops have enough memory to buffer even our 
largest video there is no reason for the player to drop parts of the 
data already played (by moving Bs) as the user might later replay 
part of or the whole video. 

3.2.2 Detecting replay issues 
Next, we experimented with limiting the server bandwidth to find 
out what would be the minimum bandwidth a browser would need 
to play a video of our dataset. We chose an HD video of 6m29s 
with a bit rate of 965 kbits/sec. We started to limit the video 
server throughput to 1900kbps which should have been plenty for 
the browsers to play the video smoothly.  
We started with the Chrome browser on an EC2 m1.small 
instance and obtained the results shown on Figure 7. We notice 
several drops in the bandwidth usage from the server side as the 
player stops fetching data when its buffer reaches a certain size. 
After a very brief pause at the beginning, the video plays without 
issues until the end with no lag or skips observed. 

 
Figure 7. Chrome playing a 965kbps bitrate video with a 

bandwidth limit of 1900kbps on an EC2 m1.small instance. 
We then repeated the same experiment with Firefox in the same 
m1.small VM and noticed anomalies during replay as shown in 
Figure 8. First, we notice a number of interruptions in the 
rendering of the stream highlighted by the lag metric on Figure 8. 
Second, we observe 7 occurrences of parts of the video being 
skipped highlighted by jumps in the skips metric. The 
accumulated lag observed jointly skips is a manifestation of a 

CPU starvation issue. The player cannot play the frames fast 
enough and skips parts of the video to catchup with the stream. 
The player skips so many frames that the 400 seconds video ends 
up being played in 300 seconds. We confirmed by looking at our 
CPU monitoring data that the CPU was indeed maxed out while 
the video was playing during network transfers.  

 
Figure 8. Firefox playing a 965kbps bitrate video with a 

bandwidth limit of 1900kbps on an EC2 m1.small instance. 

 
Figure 9. Firefox playing a 965kbps bitrate video with a 

bandwidth limit of 1900kbps on an EC2 m3.medium instance. 
To confirm that CPU was the cause of the observed performance 
problems, we repeated the experiment using a larger m3.medium 
EC2 instance under the same network conditions. These instances 



use a High Frequency Intel Xeon E5-2670 v2 (Ivy Bridge) 
processor that is about 65% faster than the one found in the 
cheaper m1.small instances. The results can be seen in Figure 9. 
The download bandwidth is exactly the same but now the video is 
playing smoothly with no lags or skips after the startup phase. 

 
Figure 10. Performance issues on a node deployed in South 

America during an Internet scale experiment 
During one of our Internet scale experiments under high 
concurrency, we observed the performance shown on Figure 10. 
The node was competing for network bandwidth with 23 other 
browsers and had erratic network stream performance. These 
extreme conditions put the player in a condition that it doesn’t 
seem to be able to cope with as it skips the video much faster than 
clock time. The 6.5 minute video ends up being replayed in just 
140 seconds with most of its content being skipped. Video 
BenchLab can push the limits of real players in real network 
conditions which is useful for both video player and network 
protocol developers. 

3.2.3 Detecting network congestions 
In this experiment, we re-use the same video as in section 3.2.1 
but limit the MediaDrop server bandwidth slightly over the bitrate 
of the video and induce network congestion by limiting the 
bandwidth down to 100kbps for a 30 second period during the 
replay.  

 
Figure 11. Chrome 36 native HTML5 video player behavior 

with an induced network congestion. 

We first perform the experiment with Chrome and observe the 
results shown in Figure 11. The video starts to play normally until 
we reach the network congestion phase. At that point, the buffer 
size stops growing and the video plays until the current video 
position reaches the buffer end (Be). At that point the video stops 
playing until the download resumes with the restoration of the 
network bandwidth. The video then plays normally until the end. 

 
Figure 12. Firefox 30 native HTML5 video player behavior on 

an m1.small EC2 VM with an induced network congestion. 
We repeat the same experiment with Firefox on an m1.small 
instance and present the results in Figure 12. The CPU limitations 
are still present during the download phases and characterized by 
the combination of lag and skips. However, the network 
congestion phase is still clearly isolable when the buffer size 
plateaus and the current video position (Vc) matches the buffer 
end (Be). At this point, lag increases linearly. 
To eliminate the CPU related lag, we repeated the experiment 
using an m3.medium instance and obtained results similar to the 
ones observed with Chrome on Figure 11. 

3.2.4 Summary 
Traditional Web or network level metrics are not enough to 
determine if a video playback in a browser is satisfactory. We 
have shown that lag and skips metrics are good indicators of 
abnormal video replays. When both lag and skips are observed 
simultaneously, it indicates a lack of resources to play the video at 
the required frame rate. When lag increases steadily and the 
current video position has reached the video buffer end, it 
indicates a network congestion condition. skips could also be 
observed in case of a corrupted data stream but we would not 
expect to see any lag in that case. These use cases illustrate how 
Video BenchLab may be used to conduct experiments, analyze 
results and understand client, server or network behavior. 
 

3.3 Internet scale experiments 
To illustrate the automation capabilities of Video BenchLab and 
the ease of Internet scale experimentation, we deployed BCRs 
with both Chrome (m1.small VM) and Firefox (m3.medium VM) 
in six Amazon data centers: US East coast, US West coast, 
Europe, Japan, Australia and Brazil. Our MediaDrop VM is 
located in the US East coast data center as well as the BenchLab 
Dashboard as illustrated on Figure 13. 
 



Table 3. Internet scale experimental results 

Region 
Client side bandwidth limited to 3Mb/s per client Server side bandwidth limited to 25Mb/s 

Firefox Chrome Firefox Chrome 

US East 

    

EU 

    

Japan 

    

Australia 

    

Brazil 

    
 



 

 
Figure 13. Overview of the Internet scale experiments with 24 
browsers deployed in 6 data centers. Average observed latency 

is to the MediaDrop server deployed in US East. 
We conduct 2 experiments: one in which the bandwidth on each 
client is limited to 3Mb/s to mimic a typical home broadband 
Internet connection but the server bandwidth is not limited, a 
second one where clients have unlimited bandwidth but the server 
is limited to 25Mb/s. We deploy a total of 24 browsers distributed 
evenly across the 6 data centers. Half of the browsers are Firefox 
and the other half are Chrome, thus each data center hosts 2 
Firefox and 2 Chrome BCRs. The results of both experiments are 
summarized in Table 3. We only show one browser type per data 
center per experiment as both browsers behave similarly overall in 
the same location. Due to space constraints, we do not show the 
results for the US West coast data center but the results are very 
similar to the ones observed for the US East coast data center. 
All BCRs play the same 6m29s HD video but the start is 
staggered at a 5 second interval. The video is already in 
MediaDrop’s memory cache before the start of the experiment so 
that no significant disk IO disturbs the server performance during 
the experiment. 
When the bandwidth is limited on the client side only (first 2 
columns of the table), the server bandwidth increases steadily as 
each new browser starts to fetch the video. The server bandwidth 
usage peaks at about 50Mb/s when the first browsers are done 
downloading their video. Note that we use a staggered start every 
5 seconds, so that the 24th browser starts 23x5=115 seconds after 
the first browser. This explains why the server bandwidth curve is 
shifted on the different client graphs. The bandwidth usage 
decreases progressively as browsers complete the video 
download. There is a very minimal lag at the very beginning of 
the replay that is slightly higher for more remote regions but as 
soon as the download is started, all browsers are able to play the 
video without any noticeable lag or skip. 
When the bandwidth is limited on the server side only (right most 
2 columns of Table 3), the results are dramatically different. As 
soon as the first browser starts, it uses the entire 25Mbps of server 
bandwidth. From that point on, all browsers compete for the 
server bandwidth. All browsers experience lag on startup that 
increases with the distance from the server. US clients only 
experience few seconds of lag whereas browsers deployed in 
Australia or Japan are stalled for more than 100 seconds before 
the video can start playing. The effect is more pronounced with 
Firefox that has a more aggressive video buffer management. 
Chrome experiences at least as much lag as Firefox in the US but 
seem to do better in remote location with its less greedy approach 
to video buffer management. 

While this experiment illustrates the ability to run large 
distributed experiments, a researcher would clearly need to run 
additional experiments to better understand the effects that the 
video player, network or server can have on the overall 
performance at Internet scales. Video BenchLab provides the 
means for researcher to perform these experimentations using real 
browsers, real networks and realistic workloads and media 
servers. 

4. RELATED WORK 
While there has been prior work in the areas of modeling, 
characterization and evaluation of streaming media systems, there 
is a relative dearth of benchmarking tools for streaming media 
researchers. Within the computer architecture community, 
PARSEC [1] and Versabench [19] are two benchmarking tools 
that enable performance evaluation of streaming media 
applications on modern CPUs and multiprocessor architectures. 
These benchmarking tools are better suited for architecture 
research and especially for measurements of a single machine, 
rather than multimedia systems researchers who are evaluating an 
end-to-end streaming system. Similarly the MediaBench II 
benchmarking suite [12] includes a comprehensive set of tools for 
evaluating video encoders and decoders, rather than entire 
streaming systems. Benchmarking tools and systems for 
evaluating content-based video retrieval [14] or visual search [15] 
also exist although they are in a different domain from multimedia 
systems research. Within the area of multimedia systems, EPFL 
researchers have developed the Cloud Suite Media streaming 
benchmark [5]; while this benchmark also uses open source 
components such as the Darwin streaming server and the Faban 
workload generator, it is primarily designed for systems that use 
RTP and RTSP streaming. In contrast, Video BenchLab focuses 
on HTTP streaming systems, which is the dominant protocol used 
for streaming content today [19]. Video BenchLab builds upon 
BenchLab [1] which was designed for web applications and 
provides similar benchmarking features and benefits for streaming 
media servers and client-based experimental research.  
There has been other related research in the areas of workload 
characterization and workload generation. G-ISMO [22] is a tool 
for generating Internet streaming media files and workloads. 
Techniques for generating HTTP streaming workloads for 
evaluating server performance have been proposed in [19]; the 
generated workloads are replayed using the httperf tool. Both 
efforts are complementary to our work in that the generated 
workload traces can be used by Video BenchLab to inject 
workloads to a server. Further, unlike replay tools like httperf, our 
platform uses real web browsers to issue requests and play videos, 
which yields a more representative HTTP-based streaming 
workload at the server. Datasets for multimedia benchmarking 
also exist [12] and numerous such datasets have been released as 
part of the dataset track within the ACM Multimedia Systems 
conference [1]. Numerous researchers have characterized the 
nature of videos found on the Internet. Characteristics of stored 
videos on the Internet were studied in [19], while live streaming 
workloads have been studied in [25]. YouTube traffic has been 
characterized in [20] and [30] while streaming media workloads 
and Berkeley media workloads have been characterized in [5] and 
[25]. Companies such as Google regularly measure video quality 
to different ISPs and publish statistics as a Video Quality report 
[9]. Finally, in the area of modeling, streaming media servers and 
their workloads have been modeled in detail in [5] which is 
complementary to our effort on benchmarking.  

São Paolo 124ms 
Sydney 215ms 

Tokyo 166ms 

Dublin 84ms 

California 
88ms 

Virginia  
0.5ms 



5. CONCLUSIONS 
Motivated by the need to develop flexible, open performance 
evaluation tools for streaming media, in this paper we presented 
the design and implementation of video BenchLab, an open 
platform tailored for multimedia systems researchers. Components 
of our platform include a MediaDrop video server, a suite of tools 
to bulk insert videos and generate streaming media workload, a 
dataset of freely available video, and a client runtime to replay 
videos in the native video players of real Web browsers such as 
Firefox, Chrome and Internet Explorer. Finally, our platform also 
provides a Dashboard to manage and automate experiments, 
collect results and perform analytics to compare performance 
between experiments. We presented numerous illustrative use 
cases to demonstrate what kinds of experiments could be run 
using our platform and how the results could be used to better 
understand system behavior. All the software, datasets, workloads 
and results used in this paper are made freely available and we 
hope that the Video BenchLab platform will enable more realistic 
and scalable experimentation within the research community.  
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